
연세대학교 의과대학 용인세브란스병원 의생명시스템정보학교실 윤덕용 교수, 한창호 기초전공의 팀이 연구를 통해 심전도 데이터를 기반으로 관상동맥 석회화를 탐지할 수 있는 인공지능 알고리즘을 개발했다. 연구는 SCI급 국제 학술지 ‘Frontiers in cardiovascular medicine’에 개재됐다.
관상동맥 죽상경화증은 혈관 가장 안쪽을 덮고 있는 내막에 콜레스테롤이 침착하고 내피세포의 증식이 일어나 죽종이 형성되는 질환이다. 이는 혈류 공급의 장애를 일으켜 협심증, 심근경색과 같은 허혈성심질환을 일으킬 수 있다. 이러한 관상동맥 죽상경화증을 예측하는 주요 지표로는 관상동맥 석회화가 있다.
관상동맥 석회화는 관상동맥 석회화 수치로 확인되는데, 점수에 따라 ▲No atherosclerosis(▲Mild disease ▲Moderate disease ▲Severe disease 등의 등급으로 나뉜다. 석회화 정도에 따라 식이조절, 운동, 금연 등의 생활습관 개선과 항고지질혈증제, 항혈소판제 등의 예방적 치료가 고려되며 추가적으로 운동부하검사, 심혈관조영술 등의 검사를 실시하기도 한다.
그간 관상동맥 석회화 수치는 주로 CT 검사를 통해 측정했었다. 그러나, CT 촬영술은 비용이 높을 뿐만 아니라 방사선 피폭이 발생하기에 일상적으로 적용하기 어렵다는 단점을 지닌다. 이에, 용인세브란스병원 윤덕용 교수팀은 상대적으로 비침습적이고 방사선 피폭이 발생하지 않는 장점을 지닌 심전도 검사를 활용해 관상동맥 석회화를 탐지하는 방안을 모색했으며, 연구를 바탕으로 심전도 기반 관상동맥 석회화 탐지 인공지능 모델을 개발했다.
인공지능 모델의 훈련에는 환자 5765명의 심전도 총 8178건이 사용됐으며, 검증에는 환자 877명의 심전도 총 1745건이 활용됐다. 이를 바탕으로 연구팀은 관상동맥 석회화 수치 100 이상, 400 이상, 1000 이상을 예측하는 이진 분류 인공지능 모델들을 개발했다.
이번 연구는 심전도 내에 함축된 유용한 임상 정보를 인공지능을 활용해 추출한 것으로, 심전도 검사로 방사선 피폭 등의 단점을 지닌 CT 검사를 대체해 관상동맥 석회화를 효과적으로 탐지할 수 있음을 확인했다는 점에서 큰 의의를 지닌다.